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Abstract
Purpose For successful prevention and intervention, it is important to unravel the complex constellation of factors that affect neuro-
cognitive functioning after pediatric intensive care unit (PICU) admission. This study aims (1) to elucidate the potential relevance of 
patient and PICU-related characteristics for long-term adverse neurocognitive outcome after PICU admission for bronchiolitis, and (2) 
to perform a preliminary exploration of the potential of machine learning as compared to linear regression to improve neurocognitive 
outcome prediction in a relatively small sample of children after PICU admission.
Methods This cross-sectional observational study investigated 65 children aged 6–12 years with previous PICU admission for bron-
chiolitis (age ≤ 1 year). They were compared to demographically comparable healthy peers (n = 76) on neurocognitive functioning. 
Patient and PICU-related characteristics used for the prediction models were as follows: demographic characteristics, perinatal and 
disease parameters, laboratory results, and intervention characteristics, including hourly validated mechanical ventilation parameters. 
Neurocognitive outcome was measured by intelligence and computerized neurocognitive testing. Prediction models were developed 
for each of the neurocognitive outcomes using Regression Trees, k-Nearest Neighbors, and conventional linear regression analysis.
Results The patient group had lower intelligence than the control group (p < .001, d = −0.59) and poorer performance in neurocognitive 
functions, i.e., speed and attention (p = .03, d = −0.41) and verbal memory (p < .001, d = −0.60). Lower intelligence was predicted by 
lower birth weight and lower socioeconomic status (R2 = 25.9%). Poorer performance on the speed and attention domain was predicted 
by younger age at follow-up (R2 = 53.5%). Poorer verbal memory was predicted by lower birth weight, younger age at follow-up, and 
greater exposure to acidotic events (R2 = 50.6%). The machine learning models did not reveal added value in terms of model perfor-
mance as compared to linear regression.
   Conclusion: The findings of this study suggest that in children with previous PICU admission for bronchiolitis, (1) lower 
birth weight, younger age at follow-up, and lower socioeconomic status are associated with poorer neurocognitive outcome; 
and (2) greater exposure to acidotic events during PICU admission is associated with poorer verbal memory outcome. The 
findings of this study provide no evidence for the added value of machine learning models as compared to linear regression 
analysis in the prediction of long-term neurocognitive outcome in a relatively small sample of children.

What is Known:
• Adverse neurocognitive outcomes are described in PICU survivors, which are known to interfere with development in other major domains 

of functioning, such as mental health, academic achievement, and socioeconomic success, highlighting neurocognition as an important 
outcome after PICU admission.

• Machine learning is a rapidly growing field of artificial intelligence that is increasingly applied in health care settings, with great potential 
to capture the complexity of outcome prediction.

What is New:
• This study shows that lower birth weight, lower socioeconomic status, and greater exposure to acidotic events during PICU admission for 

bronchiolitis are associated with poorer long-term neurocognitive outcome after PICU admission. Results provide no evidence for the added 
value of machine learning models in a relatively small sample of children.

• As bronchiolitis seldom manifests neurologically, the relation between acidotic events and neurocognitive outcome may reflect either poten-
tially harmful effects of acidosis itself or related processes such as hypercapnia or hypoxic and/or ischemic events during PICU admission. 
This study further highlights the importance of structured follow-up to monitor long-term outcome of children after PICU admission.
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Abbreviations
CPR  Cardiopulmonary resuscitation
ECMO  Extracorporeal membrane oxygenation
etCO2  End-tidal carbon dioxide
FiO2  Fraction of inspired oxygen
FSIQ  Full-scale intelligence quotient
PEEP  Positive end-expiratory pressure
PICU  Pediatric intensive care unit
PIM2 score  Pediatric Index of Mortality 2 score
PIP  Positive inspiratory pressure
SpO2  Oxygen saturation

Introduction

With advances in pediatric intensive care, the survival rate 
of children admitted to the pediatric intensive care unit 
(PICU) has increased dramatically in the past decades [1, 2]. 
Yet, long-term morbidity after PICU admission is a growing 
concern [3, 4]. Sequelae are described in physical, neurocog-
nitive, and psychosocial health [3–7]. Adverse neurocogni-
tive outcomes are known to interfere with development in 
other major domains of functioning, such as physical and 
mental health [8, 9], academic achievement [10], and socio-
economic success (as measured by education, occupation, 
and income) [11], highlighting neurocognition as an impor-
tant outcome after PICU admission.

In the literature, multiple pathophysiological mecha-
nisms have been proposed that may contribute to long-term 
neurocognitive outcome of critically ill patients, including 
hypoxia, metabolic derangements such as glucose dys- 
regulation and ischemia [12–14]. Such mechanisms may be 
triggered by the underlying disease [15], the critical deterio-
ration [7, 16], and/or the associated treatments at the PICU 
[17, 18]. In addition, also demographic characteristics such 
as age at PICU admission, age at follow-up, sex, and socio-
economic status have been found related to neurocognitive 
outcome after PICU admission [7, 18–20]. As understanding 
of the origin of difficulties in neurocognitive functioning is 
a prerequisite for successful prevention and intervention, it 
is important to unravel the factors that affect neurocognitive 
functioning after PICU admission.

Digitalization of health care provides increasingly more 
data that can importantly contribute to better prediction and 
understanding of long-term outcome after PICU admission. 
Nevertheless, the increasing wealth of clinical data produced 
by medical devices involves very long time series represent-
ing a great number of characteristics with potential complex 
inter-relations that are relevant for outcome. Therefore, novel 

data sources challenge conventional statistical methods, such 
as linear regression, which are not suitable to handle larger 
numbers of predictors and have limited potential to capture 
complex relations between predictors and outcome. Com-
pared to conventional statistics, machine learning has great 
potential to capture this complexity thanks to the capabil-
ity to process vast amounts of data and model non-linear 
and highly complex interactions [21]. Machine learning is a 
rapidly growing field of artificial intelligence that is increas-
ingly applied in health care settings [22–25]. Given the large 
number of factors and mechanisms that have been implicated 
on the long-term neurocognitive outcome of critically ill 
patients, machine learning may have added value compared 
to linear regression to improve neurocognitive outcome pre-
diction. However, the value of machine learning in investi-
gating the relation between PICU admission and long-term 
neurocognitive outcome has not been investigated thus far 
and is therefore currently unclear.

This study aims (1) to elucidate the potential relevance 
of patient and PICU-related characteristics for long-term 
adverse neurocognitive outcome after PICU admission for 
bronchiolitis, and (2) to perform a preliminary exploration 
of the potential of machine learning as compared to linear 
regression to improve neurocognitive outcome prediction in 
a relatively small sample of children after PICU admission.

Materials and methods

Participants

This cross-sectional observational study assessed children 
aged 6–12 years with a history of PICU admission during 
infancy (age ≤ 1 year) for bronchiolitis requiring invasive 
mechanical ventilation (“patient group”). The diagnosis of 
bronchiolitis was defined as clinical symptoms of a lower 
respiratory tract infection including a positive viral naso-
pharyngeal aspirate. The patient group was compared to nor-
mally developing peers who had not been admitted to the 
PICU during their life (“control group”) on neurocognitive 
functioning. All participants were required to be proficient 
in the Dutch language. We included children from the age of 
six, as by that age the full range of neurocognitive functions 
can be assessed. We focused on children of primary school 
age, in an attempt to limit the heterogeneity in the devel-
opment of the children. Exclusion criteria were as follows: 
developmental disorders known to impact on neurocognitive 
development; physical conditions and/or behavioral deficits 
interfering with the ability to adequately perform neurocog-
nitive testing; clinical signs of neurological complications 
during PICU admission (e.g., seizure, encephalitis, meningi-
tis); presence of family conflict interfering with study partic-
ipation (e.g., child abuse, child being placed under external 
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supervision); and living abroad. We specifically focused on 
children with previous PICU admission for bronchiolitis, 
because this is a relative homogenous group with single 
organ failure that seldom manifests neurologically [26, 27] 
and is therefore not expected to affect neurocognitive func-
tioning in itself.

The patient group was retrospectively recruited from 
a consecutive cohort admitted between 2007 and 2013 to 
the PICU of the Amsterdam University Medical Centers 
(UMC), The Netherlands. All children in the patient group 
received similar treatment per local clinical protocol at time 
of PICU admission, including invasive mechanical ventila-
tion modes, primary and secondary choice of sedative drugs 
during mechanical ventilation, oxygen therapy, and nutrition. 
The control group was recruited through the patient group 
(friends and relatives) and through primary schools in The 
Netherlands. We aimed to include at least 64 children in the 
patient group and 64 children in the control group, in order 
to achieve sufficient statistical power to detect medium-sized 
group differences (Cohen’s d = 0.5, assuming power = 80% 
and alpha = .05).

Measures

Patient and PICU‑related characteristics

Data on socioeconomic status, past breastfeeding, mother’s 
smoking, and drinking of alcohol during pregnancy were 
collected using a parental questionnaire, as these charac-
teristics have potential influence on children’s neurocogni-
tive functioning [28–30]. Socioeconomic status was defined 
as the average level of education for the available parent(s) 
and/or caregiver(s) and measured with the Education Cat-
egorization Standard developed by the Statistics Nether-
lands [31]. This standard assesses parental education on an 
eight-point interval scale ranging from 1 (no education) to 
8 (postdoctoral education). In case patients only had one 
parent, socioeconomic status was determined by the level of 
parental education from only that parent. Furthermore, we 
extracted the following patient and PICU-related character-
istics from the medical files (paper files and/ or electronic 
clinical information system MetaVision iMDsoft): sex, 
age, gestational age, birth weight, age and weight at PICU 
admission, Pediatric Index of Mortality 2 (PIM 2) score 
[32], duration of invasive mechanical ventilation, length of 
PICU stay, need for reintubation, cardiopulmonary resusci-
tation, use of antibiotics during PICU stay, readmission to 
the PICU, and the isolation of type(s) of viral agents from 
the nasopharyngeal aspirate. In case gestational age and 
birth weight had not been recorded in the medical file of the 
Amsterdam UMC, this information was requested from the 
hospital where the child was born. In addition, mechanical 
ventilation parameters provide information about the disease 

severity of the children and may therefore be relevant for 
their neurocognitive outcome, and also mechanical ventila-
tion itself is potent to induce injury (e.g., to the lungs [33]). 
Therefore, we extracted the data of the mechanical ventilator 
that were hourly validated by the nurse: fraction of inspired 
oxygen  (FiO2), positive inspiratory pressure (PIP), positive 
end-expiratory pressure (PEEP), mean airway pressure, 
oxygen saturation  (SpO2), end-tidal carbon dioxide  (etCO2), 
and  SpO2/FiO2 ratio. At last, we extracted the laboratory 
measures of serum glucose, pH, partial pressure of carbon 
dioxide  (pCO2), and lactate. Arterial and/ or capillary (in 
case patients did not have an arterial line) measures were 
extracted. In case patients were readmitted to the PICU, the 
PICU-related characteristics were collected from all PICU 
admissions together. After extraction of all characteristics 
(“raw data”), clinically relevant values were calculated (e.g., 
mean value, values below or above clinical cut-offs) [34]. 
Online Resource 1 displays the clinically relevant values of 
all extracted patient and PICU-related characteristics.

Long‑term neurocognitive functioning

Neurocognitive functioning was assessed in our previous 
study [35] and was determined by assessment of full-scale 
intelligence quotient (FSIQ) and specific domains of neuro-
cognitive functioning by a standardized and computerized 
neurocognitive test-battery. FSIQ was assessed to capture 
general neurocognitive functioning and was measured by 
a short form of the Wechsler Intelligence Scale for Chil-
dren—Third edition (WISC-III) involving two subtests 
measuring verbal IQ and two scales measuring performance 
IQ, i.e., the subtests Vocabulary, Arithmetic, Block Design, 
and Picture Arrangement. FSIQ estimated with this short 
form has excellent validity (r = .95) and reliability (r = .90) 
in the normative population as well as in a mixed neuro-
logical population (r = .86 and r = .96, respectively) [36, 37]. 
The neurocognitive test-battery measures a broad range of 
key neurocognitive domains and contains a composition of 
child-friendly tests based on well-known neuroscientific 
paradigms with established validity and reliability, i.e., the 
Attention Network Test [38], Multisensory Integration Task 
[39], Tower of London [40], Rey Auditory Verbal Learn-
ing Test [41], Digit Span task [42], Klingberg task [43], 
and the Track & Trace task [44]. For more information, see 
Online Resource 2. The neurocognitive data derived from 
the test-battery were subjected to a pre-processing pipeline 
to construct neurocognitive domain scores [35]. This proce-
dure resulted in ten neurocognitive domains that explained 
78% of the variance contained in the original neurocog-
nitive data derived from the test-battery, i.e., speed and 
attention, set shifting, verbal memory, visuomotor integra-
tion, verbal working memory, interference control, visual 
processing speed, visual working memory, planning time, 
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and multisensory integration. Higher scores on each of the 
domains reflect better performance.

Procedure

Participating children underwent neurocognitive testing by 
trained examiners in a quiet room with an approximate dura-
tion of 3 h, including breaks. Block randomized order of test 
administration was applied to counterbalance the systematic 
influence of fatigue on test performance.

Pre‑processing of patient and  
PICU‑related characteristics

Missing values at random (< 10% missing values per vari-
able) were imputed using multiple imputations [45]. Outliers 
(mean ± 3 SD) were winsorized [46, 47]. In order to avoid 
that the final model would be overly sensitive to variables 
with low prevalence, variables with fewer than 10 occur-
rences per event were eliminated. In the case of multicol-
linearity between variables (based on variance inflation fac-
tor > 10 and/or Pearson > 0.7 or < −0.7), the variable with 
the lowest correlation to FSIQ was eliminated.

Statistical analysis

Statistical analysis was conducted using R [48], RStudio 
[49], the car package [50], and the caret package [51]. In 
order to gain insight in the association between predictor 
variables (patient and PICU-related characteristics) and 
long-term neurocognitive outcome, we selected two widely 
adopted machine learning algorithms Regression Trees and 
k-Nearest Neighbors that provide interpretable outcomes. 
We used multivariable linear regression analysis with back-
ward elimination as a reference model (p out > 0.05). With 
each of the techniques (i.e., Regression Trees, k-Nearest 
Neighbors, Linear Regression), one model was fitted for 
each of the neurocognitive outcomes.

The goal of machine learning is to predict an outcome 
based on patterns present in the input data (training). In 
order to train a model to predict unseen (“new”) data, the 
original dataset was split into a training set (90% of the data) 
and a blind test set (10% of the data), which were identical 
for each model. The training set was then further divided 
into ten (folds) for five-repeated ten-fold cross-validation 
[52], which was used for performance validation. Each 
model was trained on data of the training set (nine out of 
ten folds), validating training performance on the tenth fold. 
Based on the results from model training, the mean perfor-
mance across all folds was reported. Thereafter, the blind 
test set was used only once for each model, in order to assess 

internal model generalizability and model performance on 
data that were not used for model training. Internal model 
generalizability (i.e., stability of model performance on data 
that were not used to develop the model) was assessed by 
comparing model performance (the explained variance, R2) 
in the training set (average across folds) to the blind test set 
using 95% bootstrap confidence intervals (95%-CI). In case 
the mean R2 of the training set was within the 95%-CI of 
the R2 of the blind test set, we concluded that the model had 
sufficient internal generalization from the training data to the 
blind test data. Subsequently, model performance was based 
on the R2 in the blind test set. To assess the added value of 
the machine learning models as compared to our reference 
model, we compared the R2 of the blind test set between 
models, using the 95%-CI of the multivariable linear regres-
sion models as reference. For details regarding the machine 
learning algorithms, see Online Resource 3. All statistical 
testing was two-sided, α was set at .05.

Results

Participants

Children included in the patient group (n = 65, Fig. 1) did 
not differ from the total recruitment cohort of children sat-
isfying the inclusion criteria (n = 119) in terms of sex, age 
at PICU admission, duration of mechanical ventilation, and  
length of PICU stay (Online Resource 4). In addition, com-
parison between children included in the patient group 
(n = 65) versus those eligible but not included (n = 54) also 
showed no significant differences regarding these character-
istics (Online Resource 5), indicating no evidence for selec-
tion bias in the study sample. No differences between the 
patient and control group (n = 76) were found regarding sex, 
age, and socioeconomic status (Online Resource 6), indi-
cating no evidence for a confounding role of demographic 
differences between groups. The study sample consists out 
of only unique patients, of which two had two PICU admis-
sions for bronchiolitis, and five children were readmitted 
because of subglottic stenosis due to upper airway injury by 
endotracheal intubation. For these children, post-PICU time 
was used from the first PICU stay and PICU-related char-
acteristics were based on all admissions together. Table 1 
shows the patient and PICU-related characteristics of the 
included children that were used for the prediction mod-
els. Characteristics with an asterisk were eliminated in the 
Linear Regression and k-Nearest Neighbors models due to 
multicollinearity. Characteristics with less than ten occur-
rences per event were eliminated in all models and are only 
shown in Online Resource 1.
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Neurocognitive functioning

Neurocognitive outcomes are fully described elsewhere [35] 
and summarized in Online Resource 7. In brief, the patient 
group had significantly lower FSIQ (M = 95.3, SD = 15.9) 
than the control group (M = 105.1, SD = 15.1; p < .001, 
Cohen’s d = −0.59), and significantly poorer performance 
on the domains Speed and Attention (p = .03, d = −0.41) 
and Verbal Memory (p < .001, d = −0.60). To elucidate the 
potential relevance of patient and PICU-related character-
istics for long-term adverse neurocognitive outcome after 
PICU admission and to explore the potential of machine 
learning, these three neurocognitive outcomes were selected 
as outcome measures.

Value of machine learning

Internal generalization

Table 2 displays the results regarding internal generaliz-
ability and performance of the models. For the majority of 
models, we found no significant difference in model perfor-
mance on blind test data as compared to the training data, 
suggesting sufficient internal generalization of model perfor-
mance. As exception, the Regression Trees model for Ver-
bal Memory showed significantly higher performance in the 
blind test data as compared to the training data, suggesting 
insufficient internal generalization of model performance. 
The wide confidence intervals should be noted, with limited 
sensitivity for comparisons of internal model generalization.

Performance

The reference Linear Regression models showed pre-
dictive value for FSIQ (R2 = 25.9%, 95%-CI 0.0–97.3%, 
p = .005), performance on the Speed and Attention domain 
(R2 = 53.5%, 95%-CI 1.6–98.9%, p < .001) and perfor-
mance on the Verbal Memory domain (R2 = 50.6%, 95%-CI 
4.0–98.5%, p < .001). As compared to the reference Linear 
Regression models, we found no significant differences in 
performance (on blind test data) for the Regression Trees 
and k-Nearest Neighbors machine learning models. Again, 
the wide confidence intervals should be noted, reflecting 
limited sensitivity for model performance comparisons.

Taken together, the Regression Trees model for Verbal 
Memory showed poor internal generalizability of model per-
formance to new data, while both the Regression Trees and 
k-Nearest Neighbors models did not reveal added value in 
terms of model performance as compared to Linear Regres-
sion. These findings provide no evidence for added value 
of these machine learning models in the prediction of long-
term neurocognitive outcome.

Prediction of long‑term neurocognitive outcome

Considering that we did not find evidence for added value of 
the Regression Trees and k-Nearest Neighbor machine learn-
ing models, we used the Linear Regression reference models 
to provide insight in the variables that contribute to the pre-
diction of long-term neurocognitive outcome (Table 3). The 
results show that lower FSIQ was predicted by lower birth 
weight and lower socioeconomic status (R2 = 25.9%, 95%-CI 
0.0–97.3%). Poorer performance on the Speed and Attention 
domain was solely predicted by younger age at follow-up 
(R2 = 53.5%, 95%-CI 1.6–98.9%). Poorer performance on 
the Verbal Memory domain was predicted by lower birth 
weight, younger age at follow-up, and greater exposure to 
acidotic events (episodes of pH < 7.35; R2 = 50.6%, 95%-CI 
4.0–98.5%).

Exploratory analysis

We further explored exposure to acidotic events (episodes 
of pH < 7.35). Acidosis (pH < 7.35) was observed in 47 of 
65 patients (72.3%) and regarding acidosis severity, the 
following pH values were observed: pH 7.25–7.35, 196 
observations in 47 patients; pH 7.20–7.25, 36 observations 
in 16 patients; pH < 7.20, 41 observations in 10 patients. 
In 247 (90.5%) observations, acidosis co-occurred with 
elevated  pCO2, in one observation with elevated lactate, 
and in five observations with a combination of elevated 
 pCO2 and elevated lactate. In 235 (86%) observations of 

Fig. 1  Flowchart of included children. Note: Reasons to decline par-
ticipation were: not interested (n = 11), no time (n = 10), too high a 
burden on child (n = 6) or language barrier of parents (n = 2). Two 
children died due to persistent refractory pulmonary hypertension 
triggered by a viral infection
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acidosis, lactate was not measured. The pattern findings 
suggest a respiratory origin is more likely to explain the 
occurrence of acidosis as compared to a metabolic origin, 
although a combination cannot be ruled out due to the 

unavailability of lactate measurements for the majority of 
acidotic events.

The relation between verbal memory outcome and 
other aspects of acidosis exposure was also explored by 

Table 1  Patient and PICU-
related characteristics that were 
used for the prediction models

CPR cardiopulmonary resuscitation, etCO2 end-tidal carbon dioxide, ECMO extracorporeal membrane 
oxygenation, FiO2 fraction of inspired oxygen, PEEP positive end-expiratory pressure, PICU pediatric 
intensive care unit, PIP positive inspiratory pressure, PIM2 score Pediatric Index of Mortality 2 score, PIP 
positive inspiratory pressure, SpO2 oxygen saturation
a Variable eliminated in the Linear Regression and k-Nearest Neighbors models due to multicollinearity

Patient and PICU-related characteristics Mean (SD), median 
(IQR), or number (%)

Age at follow-up (years), mean (SD) 8.1 (1.2)
Sex (female), n (%) 26 (40.0)
Socioeconomic status, mean (SD) 5.3 (1.2)
Gestational age (weeks), median (IQR)a 38.1 (36.3–39.9)
Birth weight (grams), mean (SD) 3083 (968)
Breastfed in past, n (%) 42 (64.6)
Age at PICU admission (days), median (IQR)a 43.0 (23.5–79.5)
Weight at PICU admission (grams), mean (SD) 4634 (1662)
PIM 2 score, median (IQR) 1.4 (1.1–2.1)
Duration of invasive mechanical ventilation (hours), mean (SD) 169.5 (88.6)
Length of PICU stay (days), median (IQR)a 7.4 (5.7–9.0)
Glucose (mmol/L) during PICU admission, mean (SD)a 6.1 (0.8)
Episodes of glucose > 10 mmol/L, median (IQR) 0.0 (0.0–1.0)
Episodes of  pCO2 > 6.4 kPa, median (IQR)a 12.0 (7.5–19.5)
Episodes of  pCO2 < 4.7 kPa, median (IQR) 1.0 (0.0–2.0)
Episodes of pH > 7.45, median (IQR) 6.0 (4.0–11.5)
Episodes of pH < 7.35, median (IQR) 2.0 (0.0–4.0)
Episodes of  SpO2 < 90%, median (IQR) 1.0 (0.0–2.0)
Episodes of  SpO2 < 85%, median (IQR)a 0.0 (0.0–1.0)
Minimum  FiO2 (%), median (IQR) 26.0 (25.0–30.0)
Maximum  FiO2 (%), mean (SD) 88.6 (17.0)
Mean  SpO2/FiO2 ratio, mean (SD) 2.5 (0.5)
Minimum  SpO2/FiO2 ratio, mean (SD)a 1.1 (0.3)
Episodes of  etCO2 < 3.5 kPa, median (IQR) 1.0 (0.0–4.0)
Episodes of  etCO2 > 6.5 kPa, median (IQR) 5.0 (1.0–14.0)
Difference between PIP and PEEP  (cmH2O), mean (SD) 15.9 (2.5)
Mean airway pressure  (cmH2O), mean (SD)a 13.4 (1.8)

Table 2  Cross-validated results 
and bootstrapped (R = 1000) test 
results

FSIQ full-scale intelligence quotient

Outcome Algorithm R2 (%)  
training set

R2 (%) blind 
test set

95% CI of the R2 
(%) blind test set

FSIQ Linear Regression 24.1 25.9 0.0, 97.3
Regression Trees 19.7 65.3 19.2, 96.9
k-Nearest Neighbors 8.9 15.8 0.0, 58.4

Speed and attention Linear Regression 43.9 53.5 1.6, 98.9
Regression Trees 31.4 70.2 12.2, 98.9
k-Nearest Neighbors 7.6 16.9 0.0, 63.8

Verbal memory Linear Regression 41.0 50.6 4.0, 98.5
Regression Trees 10.8 76.7 23.0, 99.4
k-Nearest Neighbors 7.6 16.7 0.0, 66.5
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multivariable linear regression analysis with backward elimi-
nation. The following independent pH variables were used: 
lowest pH value of each patient, mean pH value of each 
patient, and exposure to severe acidotic events (pH < 7.20). 
In addition, we also used exposure to hypercapnia  (pCO2 > 6.4 
kPa) as an independent variable. Results are displayed in 
Table 4. Lower mean pH values and greater exposure to ele-
vated  pCO2 levels were associated with poorer verbal memory 
outcome (p = .038 and p = .011, respectively).

Discussion

This study aimed (1) to elucidate the potential relevance 
of patient and PICU-related characteristics for long-term 
adverse neurocognitive outcome after PICU admission for 
bronchiolitis, and (2) to perform a preliminary exploration 
of the potential of machine learning as compared to linear 
regression to improve neurocognitive outcome prediction 
in a relatively small sample of children after PICU admis-
sion. The results provide no evidence for the added value 
of machine learning models as compared to conventional 
linear regression analysis in the prediction of long-term 
neurocognitive outcome after PICU admission for bron-
chiolitis. As may be expected, linear regression analysis 

revealed that neurocognitive outcome was associated with 
demographic and perinatal characteristics (socioeconomic 
status, age at follow-up, and birth weight). Moreover, chil-
dren with greater exposure to acidotic events during PICU 
admission for bronchiolitis had poorer verbal memory out-
come. As the involvement of the central nervous system in 
the pathology of bronchiolitis is unlikely [26, 27], the rela-
tion between acidotic events and neurocognitive outcome 
may reflect either potentially harmful effects of acidosis 
itself, or reflect related processes such as hypercapnia, 
hypoxic, and/or ischemic events during PICU admission.

Given the large number of factors and mechanisms that 
have been proposed to contribute to long-term neurocog-
nitive outcome of critically ill patients, characteristics of 
machine learning models (such as flexibility, ability to model 
non-linear relationships, more advanced inherent selection 
strategies) may provide potential to improve neurocogni-
tive outcome prediction. We used machine learning in the 
current sample to perform a preliminary exploration of the 
potential value of machine learning to improve outcome pre-
diction in a relatively smaller sample, although comparable 
in size to other post-PICU follow-up studies [53]. Regarding 
comparison of prediction models, we found no evidence for 
added value of the Regression Trees and k-Nearest Neigh-
bors machine learning models as compared to conventional 

Table 3  Results of the final multivariable linear regression models

FSIQ full-scale intelligence quotient

Neurocognitive outcomes Predictors Standardized 
beta

Unstandardized beta (95% CI) p-value

FSIQ Total model .005
Birth weight (grams) 0.24 0.004 (0.000, 0.008) .047
Socioeconomic status 0.31 4.12 (0.97, 7.28) .011

Speed and attention Total model < .001
Age at follow-up (years) 0.57 0.46 (0.29, 0.62) < .001

Verbal memory Total model < .001
Birth weight (grams) 0.44 0.001 (0.000, 0.001) < .001
Age at follow-up (years) 0.25 0.24 (0.04, 0.44) .019
Episodes of pH < 7.35 −0.29 −0.06 (−0.10, −0.02) .008

Table 4  Exploratory analysis regarding acidotic events

pCO2 partial pressure of carbon dioxide

Neurocognitive outcome Predictors Median (IQR) Standard-
ized beta

Unstandardized beta (95% CI) p-value

Verbal memory Lowest pH value for each patient 7.29 (7.21–7.36) 0.23 2.34 (−0.16, 4.85) .07
Mean pH value for each patient 7.42 (7.41–7.44) 0.26 9.15 (0.52, 17.79) .038
Episodes of pH < 7.20 0 (0–0) −0.17 −0.06 (−0.15, 0.03) .21
Episodes of  pCO2 > 6.4 kPa 12.0 (7.5–19.5) −0.32 −0.03 (−0.05, -0.01) .011
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linear regression analysis. The wide confidence intervals, 
potentially reflecting the small sample size of the blind test 
set, provided limited sensitivity for model comparisons. 
Nevertheless, the findings suggest that machine learning 
models may not have added value in smaller sample sizes. 
Although there are examples of successful machine learn-
ing applications in small datasets [54], machine learning 
flourishes by large datasets not easily obtained in clinical 
settings [55]. This further stresses the importance of mul-
ticenter (international) collaborations [56] to pool clinical 
data and acquire larger datasets for clinical research into 
advanced outcome prediction using machine learning. In this 
study, model performance (assessed by R2) was not sufficient 
to have utility for individual outcome prediction. Neverthe-
less, it should be stressed that additional measures of model 
performance (e.g., precision and calibration) are critical to 
evaluate when evaluating the value of prediction models for 
individual outcome prediction [57]. In this study, we found 
no evidence for a typical pattern of overfitting (i.e., relatively 
high performance on training data combined with relatively 
low performance on blind test data). Conversely, a pattern 
of relatively high performance on the blind test data com-
bined with relatively low performance on training data can 
be observed, indicating instable model performance. Consid-
ering the relatively larger number of predictors relative to the 
size of the study sample, more comprehensive data reduc-
tion and predictor selection methodology could decrease the 
amount of predictors for each model and potentially improve 
the performance of machine learning in future work, and is 
considered particularly important for smaller samples.

The results of our study further show that lower socio-
economic status was associated with lower intelligence after 
PICU admission for bronchiolitis. Abundant research has 
documented the relation between lower socioeconomic sta-
tus and poorer neurocognitive functioning, of which the ori-
gin is matter of debate [18, 19, 28]. For example, poverty in 
early childhood and adverse environmental influences have 
been found related to neurocognitive functioning later in 
life [28]. In addition, literature shows that enriched envi-
ronments throughout development influence brain plastic-
ity and gene expression and resultant phenotypic cognitive 
traits [28]. We also observed that younger age at follow-up 
was associated with poorer neurocognitive functioning (i.e., 
poorer speed and attention and verbal memory). Most likely, 
this finding reflects a developmental effect, i.e., reflecting 
the commonly observed age-related improvements in neu-
rocognitive functioning [42]. Children with younger age at 
follow-up also had shorter recovery time (r = .98), which 
could theoretically also have contributed to relatively poorer 
neurocognitive performance in younger children. Indeed, 
literature shows an association between younger age at 
follow-up and poorer neurocognitive functioning in some 
PICU subgroups, such as children admitted after heart- or 

heart-lung-transplantation [7], although contradicting find-
ings have been reported in children and adolescents who 
survived meningococcal septic shock [20]. Furthermore, 
lower birth weight was associated with lower intelligence 
and poorer verbal memory. This result is consistent with 
existing work reporting an association between lower birth 
weight and poorer neurocognitive functioning [58–60].

The findings of our study further suggest that greater 
exposure to acidotic events during PICU admission is asso-
ciated with poorer verbal memory outcome. In experimental 
studies, several mechanisms have been proposed that may 
explain a potential negative effect of acidosis on the central 
nervous system, such as acidosis causing denaturation of 
proteins and nucleic acids, triggering cell swelling poten-
tially leading to cellular edema and osmolysis, and inhibition 
of excitatory neurotransmission in the hippocampus, and 
influencing neuronal vulnerability indirectly by damaging 
glial cells [61, 62]. Although the translation of these find-
ings from the literature to our study findings is unclear, our 
findings indicate that acidotic events may be implicated in 
negative effects on the central nervous system, whether or 
not through other neurotoxic processes such as hypercapnia, 
hypoxia, or ischemia. In our exploratory analyses, we found 
additional evidence indicating that higher  pCO2 measure-
ments, compatible with a respiratory origin of acidosis, were 
also related to poorer verbal memory outcome. Regardless 
of the exact mechanisms at play, our findings suggest that 
children with greater exposure to acidotic events are at risk 
of adverse long-term neurocognitive outcome after PICU 
admission for bronchiolitis, a finding that awaits replication 
in future prospective studies.

Bronchiolitis is a relatively mild indication for PICU 
admission that seldom manifests neurologically [26, 27] and 
is therefore not expected to affect neurocognitive function-
ing in itself. The observed adverse long-term neurocognitive 
outcomes may suggest that (a combination of) secondary 
consequences of bronchiolitis and/or PICU treatment may 
negatively affect outcomes after PICU admission. In previ-
ous work, we found no evidence for a relationship between 
exposure to sedatives, analgesics, anesthetics (per local pro-
tocol that was used at that time at our PICU) and a range of 
neurocognitive outcomes in the current sample [35]. In addi-
tion, duration of invasive mechanical ventilation was also 
not associated with neurocognitive outcomes [35]. In recent 
years, PICU therapy for bronchiolitis shifted to less invasive 
mechanical ventilation and more high-flow nasal cannula, 
with potential relevance for long-term outcome. Neverthe-
less, we found no association between invasive mechani-
cal ventilation and neurocognitive outcomes, suggesting 
that the shift towards less invasive ventilation is unlikely to 
influence neurocognitive outcome. Furthermore, other fac-
tors such as hypoxic episodes, hypotension associated with 
mechanical ventilation, and metabolic derangements may 
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have negatively affected children’s neurocognitive outcome 
after PICU admission [12–14, 63]. As understanding of the 
exact nature and origin of difficulties in neurocognitive func-
tioning is a prerequisite for successful prevention and inter-
vention, the findings of our study highlight the importance of 
large prospective studies aimed at identifying the combina-
tion of factors that may account for adverse neurocognitive 
outcome in children admitted to the PICU for bronchiolitis, 
and for PICU admission in general.

Although prevention strategies, such as respiratory syn-
cytial virus vaccine in pregnancy [64], show promising 
results, children will continue to be admitted to the PICU 
for bronchiolitis and for other admission indications. The 
findings of this study suggest that these children may be at 
risk of adverse neurocognitive outcome, even in the absence 
of a clear neurological manifestation of the underlying dis-
ease. Neurocognitive impairments are known to interfere 
with development in crucial outcome domains [8–11]. In 
addition, the results of our previous study [65], in which we 
investigated the same children included in the current study, 
showed that these children are at risk of long-term adverse 
daily life outcomes in terms of academic performance and 
health-related quality of life regarding school functioning 
6–12 years after PICU admission for bronchiolitis. Fur-
thermore, the findings of that study [65] suggest that lower 
intelligence may contribute to academic difficulties after 
PICU admission. Our findings underline the importance of 
long-term structured follow-up after PICU admission, even 
in the absence of underlying disease with neurological mani-
festation, enabling early identification and appropriate man-
agement of adverse outcomes. Furthermore, as it is unclear 
whether adverse neurocognitive outcomes can be catched 
up later in life, it may be warranted to continue follow-up 
monitoring into adulthood.

A limitation of our study is that a substantial number of 
eligible children (45.4%) did not participate in our study, 
mainly because they were not reached despite our efforts. 
However, we deem it unlikely that this has caused important 
selection bias because the study sample did not differ from 
the total cohort of eligible children in terms of demographic 
characteristics and illness severity. A second limitation 
relates to the operationalization of socioeconomic status as 
the average level of parental education. The use of parental 
education is only one attribute of the multifaceted construct 
of socioeconomic status, not accounting for the roles of, for 
example, income and level of professional functioning [66]. 
This may limit the generalizability of the study to commu-
nities with wide disparities according to for example race, 
ethnicity, economic opportunities, and/or insurance status. 
Furthermore, we acknowledge that the reported associations 
between risk factors and outcome may not reflect causal rela-
tionships [67]. Important to note, is that the number of aci-
dotic events was determined on blood gas analyses measured 

based on clinical signs of respiratory distress. Therefore, 
the number of assessed blood gas analyses varied between 
patients based on the presentation of clinical state. In addi-
tion, we included both arterial and capillary blood gas and 
lactate measures, as only a minority of the children had an 
arterial line. Yet, capillary blood gases accurately reflect 
arterial pH and  pCO2 in most PICU patients (in particular 
in hemodynamic stable patients) [68]. Another limitation 
of this study is that we did not perform external validation 
of the models, such as by an independently collected data-
set sample of another hospital. Therefore, the hypothesis 
that acidotic events may increase the risk of adverse verbal 
memory outcome awaits replication in future work. At last, 
this study has modest sample size and hence had limited sta-
tistical power [69]. A strength of our study is that we exten-
sively investigated patient and PICU-related characteristics 
in the relation between PICU admission and neurocognitive 
outcome. In addition, we focused on children admitted to 
the PICU for bronchiolitis, in an attempt to control for the 
confounding effect of underlying disease on outcome.

Conclusion

The findings of this study suggest that in children with 
previous PICU admission for bronchiolitis, (1) lower birth 
weight, younger age at follow-up, and lower socioeconomic 
are associated with poorer neurocognitive outcome; and (2) 
greater exposure to acidotic events during PICU admission 
is associated with poorer verbal memory outcome. Our study 
does not provide evidence for the added value of machine 
learning models as compared to conventional linear regres-
sion analysis in the prediction of long-term neurocognitive 
outcome in a relatively small sample of children with PICU 
admission. This study further highlights the importance of 
structured follow-up to monitor long-term outcome of chil-
dren after PICU admission.
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